

Australian Government

Department of Defence Defence Science and Technology Organisation

Scheduling multi-spectral collection of the Australian landmass using a 6U cubesat constellation

DSTO-ISRD Leon Stepan Iain Cartwright David Lingard

UNCLASSIFIED

Outline

- Problem we are addressing
- Scheduling tool we are using
- Scope of our analysis
- Our modelling approach
 - 6U cubesat
 - Hypothetical constellations
- Scheduling results for a single day
 - Impact of constraints related to data storage & downlink
 - Impact of cloud
- Conclusions & further work

The Problem

GA: Continuity of Earth Observation Data for Australia, Hudson 2011

Collection Planning & Analysis Workstation (CPAW)

- Schedule collections by imaging satellites
- Electro-optic & Synthetic Aperture Radar
- Operationally proven heritage
- High fidelity spacecraft modelling
- Multiple advanced scheduling algorithms
- U.S. International Traffic in Arms Regulations

Includes constraints related to:

- 1. Solid state recorder capacity
- 2. Downlink
- 3. Battery
- 4. Cloud

													Control/Status						
		CP ID			OE	B_(0)			Ephemeri	•					DE	MOSATI_2	0100501000000-20100701000000		
		CP Score	104	48 260	Real	Id Status	0	unin late		W	eather		No weather applied						
	OBP	Concerent ID	DEM	OCATI	0	a look dad		24		Upli	sk Start								
		O the	-		ocas	is included		47	Darile	Wns	fow Sta	rt	2010-05-15T02-55-39.6002						
-		Urbit			Cor	cousies	v	cistion	Lecara	Wn	dow Sto	0	2010-05-15T03 11-28 6002						
		Grid Filter	₩ DE	MOSAT1	-														
in V	Indone Scatte	CP Marana	-1																
	inter i	Co na agene						-	1										
lap i	lequest	P Auto Req	rest	Pathfind	er. T	Timeout ((min)	1 2	1										
													Scans						
ex	Task Orde	Strip	Priorit	y Area So	ore	Status	CCF	Max CO	Strip Angle	off-Ned	ir GSC	Steres	Imaging Start Time Duratio	on Star	t Start ON	End ONA	Access	Access Start Time	Access E
	Image10	Image10_0	120	939 42	6 A.	alable	-1	100	0.0	0-30	-	•	2010-05-15703-03-03-2002 7.6	N.	12.266	11.262	2010-05-15T03.02.08.4002-2010-05-15T03.04.05.8002	2010-05-15T03 02 08 400Z	2010-05-1510
	Image 10	image10_1	120	857 41	4 Au	vailable	-1	100	0.0	3-30		27	2010-05-15T03-03-04-2002 6.8	N	13.338	12.431	2010-05-15T03-02:10.0002-2010-05-15T03-04-05-2002	2010-05-15T03.02 10.000Z	2010-05-1510
	Image10	Image10_2	120	760 40	1 Au	valable	-1	100	0.0	3-30		- 3	2010-05-15703-03-05.0002 6.2	N	14.38	13.593	2010-05-15T03-02:11.8002-2010-05-15T03-04-04-4002	2010-05-15T03-02-11 8002	2010-05-1570
	Image10	image10_3	120	663 38	8 4,	alable	-1	100	0.0	0-30	-	-	2010-05-15703.03.06.0002 5.4	N	15.424	14.736	2010-05-15T03.02 13.8002-2010-05-15T03.04:03.6002	2010-05-15703 02:13 8002	2010-05-1571
	Image10	Image10_4	120	566 37	5 A.	alable	-1	100	0.0	5-30	-		2010-05-15703-03-07.0002 4.6	N	16.45	15.887	2010-05-15T03-02-15-8002-2010-05-15T03-04-02-8002	2010-05-15T03 02 15 8002	2010-05-1510
	Image10	image10_5	120	566 37	4 Au	oldeliev	-1	100	0.0	3-30		×5.	2010-05-15703-03-07-6002 4.6	N	17.517	16.953	2010-05-15T03-02-17.6002-2010-05-15T03-04-02-0002	2010-05-15703 02:17 6002	2010-05-1510
	Image11	image11_0	120	1337 48	8 41	vailable	-1	100	0.0	30	-		2010-05-15703-02-08.8002 10.8	N	3.034	1.43	2010-05-15T03-01:10.2002-2010-05-15T03-03-18.2002	2010-05-15T03-01:10.2002	2010-05-1570
	Image11	image11_1	120	1528 43	5 h	cluded	-1	100	0.0	>-30	845	•	2010-05-15T03:02:56:6002 10	N	27.508	25.25	2010-05-15T03-01-08-0002-2010-05-15T03-03-17-4002	2010-05-15703 01 08 0002	2010-05-1510
	Image11	image11_2	120	1708 51	5 Inc	duded	-1	100	0.0	0-30	763		2010-05-15703-02-37,2002 12.6	N	19.95	17.647	2010-05-15T03-01-05-8002-2010-05-15T03-03-16-4002	2010-05-15T03 01 05 8002	2010-05-1510
2	image11	image11_3	120	1601 51	1 100	duded	-1	100	0.0	3-30	708		2010-05-15T03-02-16:4002 13	N	10.509	8.281	2010-05-15T03 01 06 4002-2010-05-15T03 03 15 2002	2010-05-15T03-01-06-4002	2010-05-1570
	Image11	inage11_4	120	423 35	7 Au	raiable	-1	100	0.0	30	-		2010-05-15T03:02:13:6002 3.6	N	7,115	6.633	2010-05-15T03.01.16.8002-2010-05-15T03.03.14.0002	2010-05-15T03 01:16.8002	2010-05-1510
9	Image12	Image12_0	120	980 43	8 A.	vailable	-1	100	0.0	0-30	-	**	2010-05-15703-04:31:4002 8	N	8.39	7.298	2010-05-15703 03 34 6002-2010-05-15703 05 36 4002	2010-05-15703 03:34 6002	2010-05-1570
	Image12	image12_1	120	972 41	8 Inc	duded	-1	100	0.0	0-30	.816	-	2010-05-15703-05-14.8002 6.6	N.	25.035	23.49	2010-05-15T03-03-35.8002-2010-05-15T03-05-36.6002	2010-05-15T03-03-35-800Z	2010-05-15TC
	Image 12	image12_2	120	963 42	3 10	cluded		100	0.0	1-30	.76		2010-05-15T03:05:01:4002 7.2	N	19.354	17.903	2010-05-15T03:03:37:0002-2010-05-15T03:05:38:6002	2010-05-15T03:03:37:000Z	2010-05-1510
	Image12	Image12_3	120	954 42	6 In:	cluded	-1	100	0.0	-30	.728		2010-05-15T03:04:47:6002 7.6	N	14.43	13.062	2010-05-15T03 03 38 2002-2010-05-15T03 05 38 6002	2010-05-15T03 03:38 2002	2010-05-1510
	Image12	image12_4	120	591 38	3 Inc	duded	-1	100	0.0	0-30	717	¥2.	2010-05-15703.04:36.2002 5	N	12.468	11.815	2010-05-15T03:03:42:6002-2010-05-15T03:05:36:4002	2010-05-15703 03:42:6002	2010-05-1570
	Image13	Image13_0	120	601 37	4 Inc	cluded	-1	100	0.0	0-30	796	•	2010-05-15703:04:09.0002 4.4	N	23.036	22.188	2010-05-15T03-02-54.8002-2010-05-15T03-04-31.0002	2010-06-15T03 02:54 8002	2010-05-1570
	Image13	image13_1	120	1159 44	0 In:	duded	-1	100	0.0	3-30	.841	-	2010-05-15703-04-18.8002 7.6	N	26.78	25.062	2010-05-15T03.02 56 4002-2010-05-15T03:04 29 6002	2010-05-15103-02-56-4002	2010-05-1510
	Image13	image13_2	120	1516 49	0 Au	vailable	-1	100	0.0	3-30	-	1	2010-05-15703/03:45:2002 11.6	N	20.737	19.342	2010-05-15T03.02:58.2002-2010-05-15T03.04.43.8002	2010-05-15T03 02:58 200Z	2010-05-1570
1	Image13	Image13_3	120	1601 49	9 Au	valiable	-1	100	0.0	0-30	-	5	2010-05-15T03-03-45-6002 12-2	N	21.819	20.371	2010-05-15T03 03:00:2002-2010-05-15T03:04:43:0002	2010-05-15703 03 00 2002	2010-05-1570
	Image13	image13_4	120	1680 50	8 A.	valable	-1	100	0.0	5-30	-	•	2010-05-15T03 03-46 000Z 12.8	N.	22.876	21.385	2010-05-15703 03:02:4002-2010-05-15703:04:42:4002	2010-05-15103 03 02 4002	2010-05-1570
1	Image13	Image13_5	120	1651 50	3 Au	valisble	-1	100	0.0	3-30	-	-	2010-05-15T03:03:47:400Z 12:6	N	23.823	22.383	2010-05-15T03.03.05.800Z-2010-05-15T03.04.41.400Z	2010-05-15T03 03 05 800Z	2010-05-1510
0	image13	image13_6	120	965 41	7 Au	vailable	-1	100	0.0	0-30		×.	2010-05-15T03:03:53:200Z 7.4	N	24.185	23.364	2010-05-15T03 03 13:6002-2010-05-15T03 04:40:2002	2010-05-15T03 03 13 6002	2010-05-1570
	Image13	Image13_7	120	287 33	2 Au	valiable.	-1	100	0.0	0-30	1	5.	2010-05-15T03-03-59.0002 2.2	N	24.58	24.344	2010-05-15T03 03:21.4002-2010-05-15T03 04:38.8002	2010-05-15T03 03 21 4002	2010-05-1510
	Image14	image14_0	120	2085 55	9 Ini	duded	-1	100	0.0	0-30	789		2010-05-15T03:05:38:200Z 15	N	22.095	20.243	2010-05-15T03-04-54-2002-2010-05-15T03-06-40.8002	2010-05-15T03-04-54-2002	2010-05-1510
0	Image14	Image14_1	120	2085 55	8 Ay	railable	-1	100	0.0	>-30	-	-	2010-05-15703-05-22.0002 15.6	N	23.859	22.038	2010-05-15703-04-39.8002-2010-05-15703-06-19.8002	2010-05-15T03 04 39 800Z	2010-05-1570
1	Image14	Image14_10	120	2085 55	5 Au	valable	-1	100	0.0	0-30	-	-	2010-05-15T03:05:28:400Z 15:6	N	26.433	24.712	2010-05-15T03.04 52 8002-2010-05-15T03.06 19.6002	2010-05-15T03.04.52.800Z	2010-05-1510
	Image14	Image14_11	120	1083 42	9 4	railable	-1	100	0.0	0-30	-	1	2010-05-15T03-05-17.6002 8.2	N	27.21	26.351	2010-05-15T03-04-46-6002-2010-05-15T03-05-56-8002	2010-05-15T03.04.46.6002	2010-05-1570
					_		_	_			_			_					
	_		_		_	_	_			_			Events						

Scope

- Not a comprehensive feasibility analysis of Tsitas & Kingston design
 - Alternative designs have been considered
- Only a subset of the key issues have been considered:
 - Mission planning
 - Orbit design
 - Ground station network
- Key issues not considered include:
 - Sensor design
 - Launch of cubesats
 - Station-keeping
 - Detailed cost estimates

6U Cubesat

Parameter	Cubesat 1	Cubesat 2			
Ground Sample Distance	23.5 m	6.5 m			
Swath width	94 km	26 km			
Downlink rate	5.4 Mbps				
Max power generation	35 W (T-wing)				

Constellation Parameters

Parameter	Medium Resolution Constellation	High Resolution Constellation
Satellites per orbit plane	7	7
Orbit planes	1	5
Local time of equatorial descending pass	10:30	9:00, 10:30, 12:00 13:30, 15:00
Ground Sample Distance	23.5m	6.5m
Cost (1 sat = US \$1.3M)	US \$9.1M	US \$45M
Analogous system	ResourceSat-1	RapidEye

Constellations

Medium Resolution

High Resolution

Example Collection Plan

Overview of results

- Aim is to image entire landmass of Australia daily
- Scheduling results are presented for a single day
- Analysis:
 - Impact of including constraints related to data storage & downlink
 - Impact of cloud
- Impact of power budget not yet considered

UNCLASSIFIED 1 Day - 7 satellites - 14 Passes Medium Resolution

Area of Australia - 7,741,220 km²

Area of Australia - 7,741,220 km² Area Collected – 2,670,592 km² Percentage – 34%

UNCLASSIFIED 7 satellites, no data constraint **Medium Resolution**

26°45'48.34" S 133°36'23.07" E elev 292 m

Area of Australia - 7,741,220 km² Area Collected – 1,417,530 km² Percentage – 18%

7 satellites, data constraint Medium Resolution

Area of Australia - 7,741,220 km² Area Collected – 2,670,592 km² Percentage – 34%

7 satellites, no data constraint Medium Resolution

Area of Australia - 7,741,220 km² Area Collected – 1,323,645 km² Percentage – 17%

7 satellites, cloud constraint Medium Resolution

UNCLASSIFIED 1 Day - 35 satellites – 70 Passes High Resolution

Deta SIO, NOAA, U.S. Navy, NGA, GEBCO US Dept of State Geographer © 2012 Google © 2012 Whereis® Sensis Fly Ltd -26/72/064* Jon 132 963762* elev 350 m

Area of Australia - 7,741,220 km²

ore and Cartier Islands

Eyo alt 5398,81 km

Area of Australia - 7,741,220 km² Area Collected – 533,806 km² Percentage – 7% UNCLASSIFIED 35 satellites, data constraint High Resolution

f Cerecenter

Great Australian Bight

Data SIO, NOAA, U.S. Navy, NGA, GEBCO US Dept of State Geographer © 2012 Google © 2012 Whereis® Sensis Fty Ltd

lat -26.862751° lon 132.718257° elev 353 m

Eye alt 5562.20 km

©2010 GOC

Results Summary

Conclusions & Further Work

- CPAW is a valuable tool for assessing mission effectiveness
- Constraints associated with data flow are a bottleneck in the analysed 6U cubesat systems
- It is essential to include cloud forecasts in the assessment
- Future work includes:
 - Gain better understanding of constraints related to:
 - Power
 - Star tracker pointing
 - Explore alternative options for the ground station network

Questions??

SSR state

Coverage by Constellations

Medium Resolution

High Resolution

